๋ณธ๋ฌธ ๋ฐ”๋กœ๊ฐ€๊ธฐ
๐Ÿš— Major Study (Bachelor)/๐ŸŸข Discrete Mathematics

Hall's Marriage Theorem, Isomorphism of Graph

by UKHYUN22 2021. 12. 3.
728x90

Hall's Marriage Theorem

๊ทธ๋ž˜ํ”„๊ฐ€ Hall's condition์— ์žˆ๋‹ค๋Š” ๊ฒƒ์€ Matching ์ด ์žˆ๋‹ค๋Š” ๊ฒƒ์„ ์–˜๊ธฐํ•œ๋‹ค.(if and only if)

If there is Matching there is Hall's Condition satisfied

If Hall's Condition is satisfied, There is a matching.

๋งค์นญํ•œ๋‹ค๋Š” ๊ฒƒ์ด ๋ณด์žฅ๋˜๋ฉด Correspondence ํ•œ Super Graph.

=> Matching ํ•œ ๊ฒƒ์ด Hall's Condition์„ ๋งŒ์กฑํ•œ๋‹ค๋Š” ๊ฒƒ์ด ์ •๋ฆฌ

 

 

Induction Basis

V1 Perfect Matching์ด Induction basis์— ๋“ค์–ด๊ฐ„๋‹ค.

(๋‹จ๋… ์ง€์›์„ ํ•˜๋ฉด ๋‹น์—ฐํžˆ ์–ด๋Š ๊ณณ์ด๋“  ๋“ค์–ด๊ฐˆ ์ˆ˜ ์žˆ๋‹ค๋ผ๊ณ  ์ƒ๊ฐํ•˜๋ฉด ๋จ)

 

Induction Step

A๋ผ๋Š” ์ง‘ํ•ฉ์ด V1์˜ subset์ด๋ผ๊ณ  ํ•˜๋ฉด N(A) ๋ณด๋‹ค ์ž‘๋‹ค๋ผ๋Š” ๊ฒƒ์„ ๊ฐ€์ •ํ•œ๋‹ค.

๋˜ํ•œ A๋ผ๋Š” ์ง‘ํ•ฉ์ด N(A)์™€ ๊ฐ™์€ ๋‘ ๊ฐ€์ง€์˜ ๊ฒฝ์šฐ๊ฐ€ ์žˆ์Œ์— ์ €๋ช…ํ•˜๋‹ค.

(N(A) : Neighbor of A)

 

Case1

: V1์— ์žˆ๋Š” ์• ๋“ค์„ V2์— ๋ชจ๋‘ ์ทจ์—…์‹œํ‚ค๋Š” ์‹œ์Šคํ…œ์ด๋ผ๊ณ  ์ƒ๊ฐ

A๋ผ๋Š” ์ง‘ํ•ฉ์ด V1์˜ ์ง„๋ถ€๋ถ„์ง‘ํ•ฉ์ด๋ผ๊ณ  ํ•˜์ž.

๊ทธ๋Ÿผ A < N(A)๋ฅผ ๋งŒ์กฑํ•˜๋Š” ์ง‘ํ•ฉ A๋ฅผ ์–ด๋–ป๊ฒŒ ์„ค์ •ํ•ด์•ผ ํ•˜๋Š”๊ฐ€?

a(์•ŒํŒŒ) ๋ผ๋Š” ์ ์„ ์ƒ๊ฐํ•˜๊ณ  ์•ŒํŒŒ๋ผ๋Š” ์ ๊ณผ ๋งค์นญ๋˜๋Š” V2์˜ b(๋ฒ ํƒ€)์ ์ด๋ผ๊ณ  ์ƒ๊ฐ์„ ํ•ด๋ณด์ž

๊ทธ๋Ÿฌ๋ฉด V1์—๋Š” a๋ฅผ ์ œ์™ธํ•œ V1' ์ด ์ƒ๊ธฐ๊ณ  V2์—๋Š” b๋ฅผ ์ œ์™ธํ•œ V2'๊ฐ€ ์ƒ๊ธด๋‹ค.

=> |V1'| = |V1| - 1 ์ด๋ผ๋Š” ๊ฒƒ์ด ๋งŒ์กฑํ•œ๋‹ค.

 

Case2

: |A| = |N(A)| ์˜ ๊ฒฝ์šฐ์— ๋Œ€ํ•ด์„œ ๋‹ค๋ฃจ๊ณ ์ž ํ•จ

Hall's condition์„ ์œ„๋ฐ˜ํ•˜๋Š” ๊ฒƒ์€ ์ƒ๊ฐํ•˜์ง€ ์•Š์•„๋„ ๋จ์ด ์ €๋ช…ํ•˜๋‹ค. (A| > |N(A)|)

A์˜ ํฌ๊ธฐ์™€ ๋™์ผํ•œ N(A)๊ฐ€ ์กด์žฌํ•œ๋‹ค๊ณ  ๊ฐ€์ •ํ•˜์ž.

์ด๋Ÿฐ ๊ฒฝ์šฐ A์™€ N(A)์˜ ๋งค์นญ์€ A์˜ Complement์™€ N(A)์˜ Complement์˜ ๋งค์นญ์„ ๊ตฌํ•ด์„œ

Union์„ ํ•˜๋ฉด Biatal Graph๋ฅผ ๊ตฌํ•  ์ˆ˜ ์žˆ๋‹ค.

 

๊ทธ๋Ÿฌ๋‚˜ Inductive Hypothesis์— ์˜ํ•ด์„œ ์„ฑ๋ฆฝํ•จ์„ ํ•ญ์ƒ ์ฃผ์žฅํ•  ์ˆ˜ ์žˆ๋Š”๊ฐ€??

Complement ํ•œ ๊ฒƒ์˜ Subset์„ ํ•˜๋‚˜ ์žก๊ณ  ๊ทธ๊ฒƒ์˜ Hall's Condition์˜ Inductive hypothesisํ•จ์„ ๊ตฌํ•œ๋‹ค๋ฉด

์—ญ์œผ๋กœ ์˜ฌ๋ผ์™€์„œ ์ „์ฒด๊ฐ€ ์„ฑ๋ฆฝํ•จ์„ ์ฃผ์žฅํ•  ์ˆ˜ ์žˆ์ง€ ์•Š์„๊นŒ

 

AUA' ์™€ N(AUA')์˜ ๊ด€๊ณ„๋ฅผ ์‚ดํŽด๋ณด์ž

AUA'๋Š” ๋‹น์—ฐํžˆ V1์˜ Subgraph์ด๋ฏ€๋กœ ์ง๊ด€์ ์œผ๋กœ | AUA' | <= | N(AUA') |  ํ•จ์„ ๋ณด์ผ ์ˆ˜ ์žˆ๋‹ค.

๋˜ํ•œ |A| + |A'| <= | N(A) U { N(A') - N(A) } | <= | N(A) | + | N(A') - N(A) | ์ด๋ฏ€๋กœ 

| A' | <= | N(A') - N(A) | ์ž„์„ ์ถ”๋ก ํ•  ์ˆ˜ ์žˆ๊ณ  Induction์ด Satisfy ํ•  ์ˆ˜ ์žˆ๋‹ค๊ณ  ํ•  ์ˆ˜ ์žˆ๋‹ค.

 

 

Isomorphism of Graph

๋ชจ์–‘์ด ๋‹ค๋ฅธ Graph์˜ ๊ตฌ์กฐ๋ฅผ ์žฌ๋ฐฐ์ง€ Rearrange ํ•ด์„œ ๋™์ผํ•œ ๋ชจ์–‘์œผ๋กœ ๋งŒ๋“ค ์ˆ˜ ์žˆ๋Š” ๊ฒƒ์„ Isomorphism ์ด๋ผ๊ณ  ํ•œ๋‹ค.

Vertice v1 v2 ๊ทธ๋ฆฌ๊ณ  Vertice w1 w2๊ฐ€ ์žˆ์œผ๋ฉฐ 

f: v1 -> w1์œผ๋กœ ๋ณด๋‚ด๋Š” ํ•จ์ˆ˜๊ฐ€ ์žˆ๋‹ค๊ณ  ๊ฐ€์ •ํ•˜์ž ๊ทธ๋Ÿฌ๋ฉด (f(v1),f(v2))๋กœ ๊ฐˆ ์ˆ˜ ์žˆ๋‹ค๊ณ  ํ•  ์ˆ˜ ์žˆ๋‹ค.

(v1, w1) iff (f(v1),f(v2))

One to one correspondence์˜ ๊ฐœ์ˆ˜๋Š” vertice๊ฐ€ n๊ฐœ๋ผ๊ณ  ํ–ˆ์„ ๋•Œ Isomorphismํ•œ์ง€ Check ํ•˜๊ธฐ ์œ„ํ•ด์„œ

N! ์˜ ๊ฒฝ์šฐ์˜ ์ˆ˜๊ฐ€ ๋‚˜์˜ค๋Š” ์ง€ ํ™•์ธํ•˜๋ฉด ๋œ๋‹ค.